source
download_dl_model
download_dl_model (models:str|list=None, path:str=None)
models |
str | list |
None |
deep learning models to be downloaded, all available models by default |
path |
str |
None |
directory to save these models, inside installed Moraine package by default |
Deep learning models have to be installed before use, download them by:
Downloading https://raw.githubusercontent.com/kanglcn/n2f/refs/heads/main/n2f.onnx to /work/projects/jinwook/radarlab/kangl/moraine/moraine/dl_model/n2f.onnx
File '/work/projects/jinwook/radarlab/kangl/moraine/moraine/dl_model/n2f.onnx' downloaded successfully.
Downloading https://raw.githubusercontent.com/kanglcn/n2f/refs/heads/main/n2fs3d.onnx to /work/projects/jinwook/radarlab/kangl/moraine/moraine/dl_model/n2fs3d.onnx
File '/work/projects/jinwook/radarlab/kangl/moraine/moraine/dl_model/n2fs3d.onnx' downloaded successfully.
source
n2f
n2f (intf:numpy.ndarray, chunks:tuple=None, depths:tuple=(0, 0),
model:str=None)
intf |
ndarray |
|
interferogram, 2d np.complex64 or cp.complex64 |
chunks |
tuple |
None |
chunksize, intf.shape by default |
depths |
tuple |
(0, 0) |
width of the boundary |
model |
str |
None |
path to the model in onnx format, use the model comes with this package by default |
Usage:
import zarr
import numpy as np
import holoviews as hv
hv.extension('bokeh')
hv.output(widget_location='bottom')
from bokeh.models import WheelZoomTool
from holoviews import opts
rslc_zarr = zarr.open('../CLI/raw/rslc.zarr/','r')
intf = rslc_zarr[:,:,7]*rslc_zarr[:,:,13].conj()
filtered_intf = n2f(intf,depths=(10,10),model='../../../noise2fringe_ps_cos/model_saved/noise2fringe_model_depth_4_0712_5/n2f.onnx')
CPU times: user 4min 6s, sys: 43.2 s, total: 4min 49s
Wall time: 5.06 s
raw_intf_plot = mr.ras_plot(np.angle(intf))
filtered_intf_plot = mr.ras_plot(np.angle(filtered_intf))
(raw_intf_plot+filtered_intf_plot).opts(
opts.Image(
cmap='colorwheel',width=600, height=600, colorbar=True,invert_yaxis=True,
default_tools=['pan',WheelZoomTool(zoom_on_axis=False),'save','reset','hover'],
active_tools=['wheel_zoom'])
)
source
n2fs3d
n2fs3d (adi:numpy.ndarray, intf:numpy.ndarray, chunks:tuple=None,
depths:tuple=(0, 0), model:str=None)
adi |
ndarray |
|
amplitude dispersion index, 2d np.float32 or cp.float32 |
intf |
ndarray |
|
interferogram, 2d np.complex64 or cp.complex64 |
chunks |
tuple |
None |
chunksize, intf.shape by default |
depths |
tuple |
(0, 0) |
width of the boundary |
model |
str |
None |
path to the model in onnx format, use the model comes with this package by default |
Usage:
import zarr
import numpy as np
import holoviews as hv
hv.extension('bokeh')
hv.output(widget_location='bottom')
from bokeh.models import WheelZoomTool
from holoviews import opts
rslc_zarr = zarr.open('../CLI/raw/rslc.zarr/','r')
intf = rslc_zarr[:,:,7]*rslc_zarr[:,:,13].conj()
adi = zarr.open('../CLI/ps/adi.zarr/','r')[:]
filtered_intf = n2fs3d(adi,intf,depths=(200,200),model='../../../noise2fringe_ps_cos_adi/model_saved/noise2fringe_model_depth_4_0721_8/n2fs3d.onnx')
CPU times: user 3min 36s, sys: 1min 1s, total: 4min 37s
Wall time: 5.02 s
if is_cuda_available():
intf_cp = cp.asarray(intf)
adi_cp = cp.asarray(adi)
filtered_intf_cp = n2fs3d(adi_cp,intf_cp)
CPU times: user 3.76 s, sys: 613 ms, total: 4.38 s
Wall time: 4.34 s